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We present a hierarchical transform that can be applied to Laplace-like differential equations such as Darcy’s
equation for single-phase flow in a porous medium. A finite-difference discretization scheme is used to set the
equation in the form of an eigenvalue problem. Within the formalism suggested, the pressure field is decom-
posed into an average value and fluctuations of different kinds and at different scales. The application of the
transform to the equation allows us to calculate the unknown pressure with a varying level of detail. A
procedure is suggested to localize important features in the pressure field based only on the fine-scale perme-
ability, and hence we develop a form of adaptive coarse graining. The formalism and method are described and
demonstrated using two synthetic toy problems.
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I. INTRODUCTION

A combination of phenomena taking place at multiple
scales in time and space is ubiquitous in many fields of sci-
ence. The hierarchical transform that will be presented in this
paper can be applied to a wide variety of problems that can
be expressed by a matrix eigenvalue problem deriving from
the discretization of a differential equation. The method is
applied to Laplace-like differential equations where flux is
proportional to a spatially varying quantity multiplied by a
potential gradient. This is the case when calculating flow
through a porous medium with varying permeability, when
calculating current through a mesh of resistors or heat trans-
fer in a material of varying thermal conductivity and also in
the calculation of mechanical properties of solids. In general
terms, whenever a Dirichlet boundary condition is given in
the calculation of the potential in such systems, this method
will allow one to obtain this potential with an adaptive spa-
tial resolution, keeping details only where needed and reduc-
ing the computational time. Having an approximation for the
potential, the flux will be easily calculated on the desired
scale. It is possible that the same approach could be success-
ful when tackling other kinds of differential equations, lead-
ing to interesting applications.

Certainly a good example where such an approach is de-
sirable are the geological systems that are the focus of atten-
tion of flow in porous media studies. Commonly, the infor-
mation available on these systems is at a scale different from
the one which is relevant for the purpose of understanding or
modeling the systems dynamics. For this reason, a very well
studied problem in the field is that of upscaling, where a
fine-scale geological model is substituted by a coarser, more

tractable model, on which flow calculations can be carried
out efficiently. An error is inherent in all upscaling proce-
dures, and often choosing the correct level of coarse-graining
is key to preserving the model accuracy. A recent attempt to
estimate the optimal scale-up factor is presented in Zhang et
al. �1�. An alternative to upscaling is multiscale flow simu-
lation, where an attempt is made to capture the flow at the
large scale while including the effects of the small-scale het-
erogeneity. A key concept in both these approaches is that of
adaptive gridding—that is, the idea of keeping a finer grid
around the areas where important flow patterns need to be
captured and using a coarser mesh away from them �2�. Aar-
nes and Efendiev �3� pointed out the importance of large-
scale features and barriers to guide the adaptivity of the
grids. One of the important factors in assessing the quality of
a grid is whether the properties within the cells are suffi-
ciently uniform. An adaptive grid refinement strategy, in
which the grid is dynamically adapted to ensure conver-
gence, was discussed in �4�. The starting point is a Cartesian
grid with anisotropic refinement around connected high-
permeability flow paths �5,6�. One issue in designing adap-
tive grids arises when trying to identify the areas which re-
quire a fine mesh. Intuitively, regions where the flow is high
will likely have important details that have a major influence
on the flow pattern �7�. This requires a preliminary single-
phase flow simulation to identify the areas of high flow.
There are also advantages in orienting the grid according to
this approximate flow scenario, which sometimes justifies
performing the flow calculation as a first step of an upscaling
method. In the present work we will assume that no flow
information is known before the upscaling is performed.

Aarnes et al. �8� present an elegant extension of the mul-
tiscale mixed finite-element method formalism to deal with
hierarchical corner-point grids. These types of grids are the
preferred choice to represent complex reservoir geology, but
it could be argued that adaptivity with anisotropic refine-
ments is an equally valid approach. Recently, a promising
upscaling scheme suggests to use adaptive stencils in the
finite-element calculation of fluxes. Lambers et al. �9� use a
multipoint flux approximation where the stencil varies to re-
vert to two-point flux approximation where the flow is more
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homogeneous. Here we will only consider Cartesian grids
and for the moment only isotropic coarse graining. However,
there is reason to believe that the following ideas could be
applied in the context of corner-point geometries as well.

Whether the system of choice for solving the equations is
finite volumes or finite differences, all these methods natu-
rally lead to a hierarchical description of the system. Berg
and Øian �10� propose a hierarchical approach to modeling
faults and conclude that all scales are important for correct
modeling of the flow. Even in the absence of faults, hetero-
geneities in the permeability play a similar role. It could be
argued that it is actually fluctuations away from the average
pressure at different scales which are responsible for the non-
trivial flow patterns that can be observed in geological sys-
tems. Recently, a multiresolution approach based on Fup ba-
sis functions which guarantee an adaptive solution to
problems with different spatial and temporal scales, has been
proposed �11�.

Wavelets are often used to highlight the hierarchical com-
ponents of a signal, and indeed the transform we propose is
inspired by a discrete Haar wavelet transform �12�. The Haar
basis, the simplest of wavelet bases, decomposes a function
into averages and differences at different scales. When this is
applied to a two-dimensional field, it gives rise to three types
of differences, which we have called vertical, horizontal, and
diagonal for simplicity. Contrary to a two-dimensional Haar
wavelet transform, our hierarchical transform can be applied
with a single matrix product and can therefore be used in a
formalism similar to the one introduced in �13�. We refer the
reader to �14� for a similar Haar wavelet approach to hierar-
chical coarse graining.

The paper is organized as follows: Section II is a brief
introduction to single-phase flow in porous media. In Sec.
II A, the transform is introduced and the formalism to apply
it to Darcy’s equation is shown; in Sec. III, an approach to
calculating the pressure solution at different scales is demon-
strated. Section IV shows how the method can be used to
obtain nonuniform adaptively coarse-grained pressure pro-
files, while Sec. V discusses the advantages and problems of
the method and possible further developments. In Appendix

A, more details on the implementation of the transform are
given.

II. PROBLEM

To illustrate the application of the hierarchical transform
to a specific problem, we will calculate pressure in a porous
medium with single-phase flow and known permeability val-
ues. This is done by setting to zero the divergence of flux,
which is given by Darcy’s law: q=−K ·�P, where q is the
flux, K is permeability, and �P is the gradient of pressure.
Imposing flux conservation � ·q=0 gives rise to a Laplace-
like differential equation � · �K ·�P�=0. In the most general
case, permeability is a tensor, but we will consider it a diag-
onal tensor, as would be true for isotropic media. We con-
sider the case where we solve this equation on a discretized
Cartesian grid, approximating it with a five-point finite-
difference scheme. The discretization is performed by speci-
fying the permeability values at the cell centers and assum-
ing pressure to be piecewise linear across the cell. In the
following we will use transmissibility, which is equal to per-
meability in the case of unit volume of the discretization grid
cell: ti=ki /�x, where �x=1 is the size of the grid cell. As-
suming transmissibility ti to be piecewise constant with an
interface between ti and ti+1 at the cell boundary and impos-
ing flow conservation, the intercell transmissibility tij is
found to be the harmonic mean of ti and tj. This constitutes a
satisfactory approximation if the properties do not change
excessively between adjacent cells �15�. The flow equation
under this discretization scheme can thus be expressed with
the matrix equation

TP = R . �1�

Here, for a d-dimensional system of linear size N, T is a
Nd�Nd transmissibility matrix, P is an Nd�1 pressure vec-
tor, and R is an Nd�1 boundary condition vector �15,16�.
The calculation of pressure can thus easily be performed in-
verting the transmissibility matrix.

A. A hierarchical transform

Many hierarchical transforms can be defined. To start
with, we focus on the requirements imposed by the fact that

FIG. 1. A pictorial representation of the hierarchical scheme underlying the structure
of H. Each row of this diagram is composed of squares of equal size. Each of the squares
refers to a single row in the H matrix. We will consider each row as acting independently
on the pressure vector. Each square contains the elements of the corresponding row,
written as a matrix �see Appendix B�. The square in the top left corner contains the
coefficients in the first row of H. These are all 1s. The result of multiplying this row by
the pressure vector is the sum of all the pressures. On level 1, the system is grouped into
2�2 blocks. The three types of differences �horizontal, vertical, and diagonal� are cal-
culated for each subset of the system �weights: 1=black, −1=white, 0=gray�. For ex-
ample, the level 1 horizontal difference is the difference between the averages of the
pressure on the left and right halves of the system �see Appendix B�. The number of rows
assigned to level 2 is 22�3=12—that is, 4 subsystems multiplied by 3 types of differ-
ences. Similarly at level 3, here only partially represented, there will be 48 rows, �23−1�2

subsets multiplied by 3 types of differences. At level i there will be 3� �2i−1�2 rows and
the total number of rows of the matrix for a 2d system of linear size N will be N2, exactly
the size of the pressure expressed as a vector. The matrix is then divided by N to ensure
the top row gives the pressure average, and finally the rows must be normalized such that
they are all orthonormal to the first one.
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we need to apply it to the finite-difference form of the single-
phase flow equation, described above. We need to apply the
transform to a pressure vector, which contains the pressure
values of a two-dimensional system of linear size N, arbi-
trarily vectorized columns first, such that pressure value 1 is
in the top left corner of the grid, pressure 2 is just below it,
and pressure N+1 is to the right of pressure 1, leaving pres-
sure N2 in the bottom right corner. This will be the number-
ing scheme used throughout the paper for the pressure. We
require that the transform be a simple matrix operation and
that its order be equal to the square of the linear system size.

B. H matrix and its properties

The aim of using this transformation is to represent each
value of pressure as the sum of a pressure average plus fluc-
tuations at different scales, given by differences. The Haar
basis is at the heart of the transformation, and this, in two
dimensions, leads to three possible types of differences: hori-
zontal, vertical, and diagonal. These differences are used to
describe the type of fluctuations in different areas of the sys-
tem and at different scales. The system is thus described at
different levels, where we define a level for a system of
linear size N in the following manner: level 0 will corre-
spond to a single value, an estimate of the spatial average of
the pressure over the whole system; at level 1, we will be
able to distinguish 4 values of pressure, as in a 2�2 system,
level 2 will give us 16 values of pressures, as in a 4�4

system, and in general, level i will be equivalent to a system
of size 2i�2i �see Fig. 2�. The highest level corresponds to
the fine scale and varies in size depending on the original
system. A scheme of the different levels, representing the
system at different scales, can be seen in Fig. 2. At level 0 we
do not consider the differences; the pressure is approximated
by a constant value which is an approximation of the pres-
sure average. At level 1, we imagine the system to be on a
2�2 grid. Now, in addition to the pressure average, we can
either take the difference between the two values on the left
and the two on the right, which we call the horizontal differ-
ence, and the difference between the top two values and the
bottom two, which is the vertical difference—respectively,
the second and third squares in the first row in Fig. 1. Finally
we can take the difference between the sum of the upper left
and lower right blocks minus the sum of the lower left and
upper right ones, the fourth square in the first row in the
figure. At level 2 we imagine the system on a 4�4 grid and
we consider the same type of differences on each 2�2 set,
horizontal for the four sets, then vertical, and finally diago-
nal, rows 2, 3, and 4 of Fig. 1. We can repeat the operation
until the system is at the fine scale. The operation of taking
these differences on the pressure is encoded in the different
rows of the transform matrix H, which has terms equal to 0,
1, or −1 with a normalization factor that ensures that the
average is given by a row with all ones and that each row is
orthonormal to the top one.

The H matrix for a 4�4 system is

2
0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25

3
. . . . . . . . . . . . . . . .6 76 76 76 7

0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 256
− − − − − − − −

7
. . . . . . . . . . . . . . . .6 76 76 76 76 7

0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25− − − − − − − −
6

. . . . . . . . . . . . . . . .

76 76 76 76 76
0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25

7
− − − − − − − −

6
. . . . . . . . . . . . . . . .

76 76 76 76 76
0 5 0 5 0 0 0 5 0 5 0 0 0 0 0 0 0 0 0 0

7
− −. . . .

6 76 76 76 76 76
0 0 0 5 0 5 0 0 0 5 0 5 0 0 0 0 0 0 0 0

7
− −. . . .6 76 76 76 76 76

0 0 0 0 0 0 0 0 0 5 0 5 0 0 0 5 0 5 0 0− −

7
. . . .6 76 76 76 76 7

0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 0 0 5 0 56
− −

7
. . . .6 7

H 1/4
6 7

= 6 76 76 7
0 5 0 5 0 0 0 5 0 5 0 0 0 0 0 0 0 0 0 0− −

6
. . . .

76 76 76 76 76
0 0 0 5 0 5 0 0 0 5 0 5 0 0 0 0 0 0 0 0

7
− −

6
. . . .

76 76 76 76 76
0 0 0 0 0 0 0 0 0 5 0 5 0 0 0 5 0 5 0 0

7
− −. . . .

6 76 76 76 76 76
0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 0 0 5 0 5

7
− −. . . .6 76 76 76 76 76

0 5 0 5 0 0 0 5 0 5 0 0 0 0 0 0 0 0 0 0− −

7
. . . .6 76 76 76 76 7
0 0 0 5 0 5 0 0 0 5 0 5 0 0 0 0 0 0 0 06

− −

7
. . . .6 76 76 76 76 7

0 0 0 0 0 0 0 0 0 5 0 5 0 0 0 5 0 5 0 0− −
6

. . . .

76 76 76 74
0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 0 0 5 0 5

5
− −. . . .
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On the largest scale, level 0, all the elements are 1. At
level 1 the elements will be either 1 or −1 multiplied by the
factors that ensure normalization. For the higher levels, only
one block in the system is considered at any one time. The
numbering scheme is always from left down first and then
right �see Fig. 1�. The three types of differences calculated at
all the levels produce a transform matrix of order N2 for a 2d
system of linear size N, which matches our requirement that
it must multiply a vector of size N2�1 �see Fig. 3�.

One very important property of the H matrix is that it is a
unitary matrix; that is, its transpose is identical to its inverse.
For this reason, when we require the inverse of H, instead of
performing a matrix inversion, we can simply use its trans-
pose instead, saving considerable computational time. More-
over, the transform is linear, so the transform of the sum of
two vectors is the same as the sum of the transforms.

Another useful property of this matrix is that its elements
can be determined based on the binary representation of the
number of the cell to which they refer �see Appendix A for a
detail explanation of the algorithm to generate the transform
matrix�.

C. Transforming the transmissibility matrix

The question we would like to address is whether we can
obtain a good estimate of the pressure without solving for it

on the fine scale. To this purpose, we apply the hierarchical
transform to Eq. �1�:

TP = R ⇔ THTHP = R . �2�

To complete the equation transformation, we multiply by H
on both sides to obtain a new transmissibility matrix and a
new boundary condition vector applied to the transformed
pressure:

�HTHT�HP = HR . �3�

Defining the transformed variables

T� = HTHT, �4a�

P� = HP , �4b�

R� = HR , �4c�

we obtain

T�P� = R�. �5�

The transformed pressure vector P� has as its elements the
pressure average followed by the differences of pressure in
the different directions and at different levels. For example,
for a 2�2 system with the previously described numbering
scheme, P�=1 /4�p1+ p2+ p3+ p4 , p1+ p2− p3− p4 , p1+ p3− p2
− p4 , p1+ p4− p2− p3�T, where only level 0 and level 1 can be
obtained because level 1 is already the fine-scale system. For
larger systems, truncating the transforms of the transmissibil-
ity matrix and the boundary condition, we can obtain an
estimate of pressure including details up to a specific level,
corresponding to the scale we are interested in. The original
and transformed transmissibility matrices are shown for an
8�8 system in Fig. 4.

In Pancaldi et al. �13� the same approach was carried out
using a one-step Haar wavelet transform instead of the hier-
archical matrix transform described above. In that case, the
structure of the transformed matrix allowed us to develop a
simple upscaling rule to coarsen the system progressively.
The appearance of blocks within the transformed matrix hav-
ing the same structure as the original matrix enabled the
elements of the two matrices to be related. This stemmed
from the fact that both the fine- and coarse-scale solutions
obey Eq. �1�. In this case, such a procedure is not possible,

FIG. 2. A schematic representation of the different levels. Level
0 is always given by a single value for pressure. The highest level
corresponds to the original fine-scale system.

FIG. 3. �Color online� The hierarchical transform matrix H for
an 8�8 system. We see here a 64�64 matrix. The first row refers
to level 0, where the pressure average is recovered and the elements
are all equal to 1. The next three rows correspond to the level-1
differences: horizontal, vertical, and diagonal, respectively. The
rows at level i are ordered by type of difference and by location,
down then right. The different colors indicate the different size of
the elements due to the normalization acting on the coefficients that
are either 1 or −1. Green areas �uniform gray background in black
and white� are elements equal to zero.
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FIG. 4. �Color online� �a� The fine-scale transmissibility matrix
for an 8�8 system of homogeneous unit permeability T. �b� The
transformed transmissibility matrix T�=HTHT. Notice the interest-
ing structure of the non-zero elements off the main diagonal �more
clearly visible in the online version�.
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because the nonzero difference terms change the equation
relating flux to pressure. What we will do instead is to con-
centrate on Eq. �5� to study ways of extracting approximate
estimates of pressure with the least computational effort.

III. PRESSURE SOLUTIONS: SOLVING FOR PRESSURE
AT DIFFERENT SCALES

While the effect of H on the transmissibility is not obvi-
ous, its effect on the pressure is very clear and can be ex-
ploited. As we intended, we now have a hierarchical descrip-
tion of the pressure solution. We are at freedom to recover
the original pressure including the desired level of detail.
This is achieved simply by taking as our new transmissibility
matrix the portion of T� that corresponds to the finest level
of detail that we want to keep in the pressure. If all we are
interested in is an estimate of the pressure average over the
whole system, we just need to divide the first element of the
boundary condition vector by the top left element of T�
�level 0�. The estimate will be accurate only if the pressure is
approximately constant, because at level 0 we consider the
pressure fluctuations to be negligible. This might not be of
great use, but we should remember that this can be achieved
without ever calculating the pressure on the fine scale.

More likely we are interested in some coarse but not
single-valued representation of pressure. Assume that we
start with a fine-scale system of size N�N. In this case we
could take the inverse of the 4�4 upper left corner of T�
and the first four elements of the boundary condition vector.
What we obtain is the transformed pressure on a 2�2 grid.
To obtain the actual pressure values, we need to apply the
inverse of the hierarchical transform for a system of the

original size to a vector containing the filtered transformed
pressure values and zeros in all the other elements. This is
easily done using the transpose of H. The result will be an
N�N pressure map with only four different values of pres-
sure as in a 2�2 system �level 1�. How does this approxi-
mation relate to the fine-scale pressure? It can be shown, and
it is also expected given our experience with the W trans-
form in Pancaldi et al. �13�, that this 2�2 coarse pressure is
an estimate of the average of the N�N fine-scale one, aver-
aged N /2�N /2 cells at a time.

As shown in Fig. 5, there is a correspondence between the
approximations that can be obtained by inverting larger and
larger portions of the transformed transmissibility matrices
and the pressure averages that can be obtained averaging
fewer and fewer cells at a time.

An interesting comparison can be made between the esti-
mates of pressure at different scales and the fine-scale solu-
tion. To assess the relationship between the error in the esti-
mates and the level of the representation, an ensemble of 30
log-normally correlated permeability realizations was gener-
ated for 5 separate cases. The permeability distribution is
characterized by mean �, standard deviation �, and correla-
tion length �. Starting from case 1, cases 2 and 3 were ob-
tained by increasing the average permeability keeping the
� /� ratio and the correlation length constant. Cases 4 and 5
are obtained by, respectively, decreasing and increasing the
average permeability as the correlation length is, respec-
tively, doubled or halved. Figure 6 shows an analysis of the
error in the estimate of pressure as a function of the coarse-
graining factor. Since our estimates of pressure at all scales
are expressed on a fine grid, we can compare them directly to
the fine-scale solution �see Fig. 7�. We define the coarse-
graining factor NCG as the initial linear system size divided
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FIG. 5. �Color online� Comparison between pressure estimates
and averages at a specific level �levels 2, 3, and 4�. �a� Logarithm of
the permeability map, 32�32 subset of the SPE10 data set �17�. �b�
Fine-scale pressure solution, flow from left to right. �c� Estimated
pressures at the specified resolution from inversion of the corre-
sponding portion of the T� matrix. �d� Average of the fine-scale
pressure solutions. �e� Relative difference between the average and
the estimate.
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FIG. 6. �Color online� Discrepancy in pressure estimate for dif-
ferent levels of coarse graining. �a� Mean relative error vs coarse
graining factor. Notice how the linear relationship does not have a
strong dependence on the details of the permeability maps, which
differ in each case. An overall linear fit to the data gives the equa-
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is the one where we have halved the correlation length and where
the � /� ratio was consequently increased �case 5�. �b� Mean rela-
tive error vs the number of elements kept. Again, case 5 is the only
one not overlapping with the other curves.
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FIG. 7. �Color online� Differences between estimates of pres-
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by the linear size at the specific level i :NCG=N /2i.
In conclusion, the pressure can be calculated with any

degree of detail, depending on the computational power
available or the specific requirements.

IV. NONUNIFORM COARSE GRAINING

So far, the coarse graining of the pressure profile has been
uniform in space. In heterogeneous systems it is expected
that different areas will require different levels of details to
achieve a satisfactory approximation of the pressure field.
Ultimately, we would like to be able to reduce the size of the
matrix to be inverted not simply by eliminating fine-scale
detail everywhere, but being able to keep different scale co-
efficients in different locations.

In the context of a full-field reservoir simulation, the ob-
vious regions where a high level of detail should be kept are
around the wells, or at the location of geological features of
considerable importance. However, on a smaller scale, we
might not have anything but the permeability map to decide
where to keep the details.

One possibility to provide a criterion for which areas
should be preserved in more detail is to perform a coarse
pressure and flow calculation. Once the main flow paths have
been identified, the nonuniform pressure solution can be cal-
culated. Although this is a fairly common technique in the
adaptive mesh refinement literature �7�, an attempt will be
made to avoid any flow simulations prior to the nonuniform
pressure solution.

To gain some insight, we can look at the size of the ele-
ments in the hierarchical transform of the pressure, P�=HP.
Clearly this can only be done in the developing stage of the
method, where we are allowed to know the pressure on the
fine scale and hence its transform. Keeping only the elements
in P� above a certain arbitrary threshold, we notice how,

even with very few elements, we can reproduce the pressure
fairly accurately �see Fig. 8�. The issue is identifying which
elements should be kept to preserve the important pressure
features.

Assuming that we are allowed to perform the fine-scale
inversion or the inversion of the transformed fine-scale prob-
lem, which requires the same computational effort, we can
check up to what point our system can be coarse grained
without losing important features.

As it is rather idealistic to assume that we have access to
the fine-scale pressure solution, we wish to find some crite-
rion to relate the size of the elements in P� directly to the
permeability field.

If we know which elements of P� were negligible, we can
“compress” the T� matrix by eliminating rows and columns
corresponding to those elements. The solution obtained for
this smaller system can be inserted into a full size vector
padded with zeros. Taking the inverse H transform of this
vector will give us a pressure map with resolution varying
across the system �see Fig. 8�c��.

A. Importance of different types of difference

Having decomposed the pressure into differences in the
three directions �horizontal, vertical, and diagonal�, in some
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FIG. 8. �Color online� Nonuniform coarse graining based on
keeping only the largest elements in the transform of pressure P�.
�a� Logarithm of the fine-scale permeability, 64�64 subset of
SPE10 �17�. �b� The fine-scale pressure solution. �c� An estimate of
pressure keeping only 442 out of the 4096 elements of P�. �d�
Relative error between fine-scale solution and estimate in �c�.
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FIG. 9. �Color online� Analysis of the importance of diagonal
differences. �a� Fine-scale permeability map, 32�32, modified sub-
set of the SPE10 data set �17�. �b� Fine-scale pressure solution. �c�
Estimate of pressure by eliminating coefficients referring to diago-
nal differences �keeping 683 /1024 elements�. �d� Relative error be-
tween the pressure estimate in �c� and the fine-scale solution. �e�
Estimate of pressure by eliminating coefficients below a certain
threshold in the pressure transform �keeping 683 /1024 elements�.
�f� Relative error between the pressure estimate in �e� and the fine-
scale solutions. In this case the diagonal differences can be ne-
glected without compromising the quality of the pressure estimate.
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cases the size of these differences can be inferred from the
permeability itself. For example, for a homogeneous or lay-
ered system we know that imposing flow from left to right
will generate no vertical variations in pressure. This means
that the vertical and diagonal differences will be almost zero
at all scales. Also, in regions where there are no diagonal
features in the pressure, we can ask what happens if we
assume that diagonal differences will not have importance
�see Fig. 9�. In Fig. 10 we see a case where keeping diagonal
differences is important. The problem, once again, is that,
while we can identify these cases by looking at the pressure,
we wish to be able to do this only using the permeability
map.

B. Selecting the coefficients to be retained

A possible strategy focuses on identifying the areas in the
permeability field where the pressure will differ considerably
from the linear profile obtained with uniform permeability.
One ideal property of an adaptive grid is that it can resolve
areas of pressure with nontrivial profiles with a finer reso-
lution than areas where pressure is simply linear. There is a
clear relationship between localized permeability heteroge-
neity and interesting features in the pressure profile, but the
pressure field is by definition not locally determined and the

effects of a small region of heterogeneous permeability can
be seen on the whole pressure profile. Nevertheless, if the
region of heterogeneity is sufficiently small compared to the
entire system, the pressure features induced should be local-
ized.

Let us consider the transformed pressure vector P� that
we would obtain for a homogeneous permeability map and a
specific set of boundary conditions. These values will be our
“default” values for the transformed pressure vector of a het-
erogeneous case with localized heterogeneity and those same
boundary conditions. If we allow the assumption that the
pressure field will be mostly affected where the heterogene-
ities are located, we can calculate the appropriate values of
P� in that region by solving a small subset of the transformed
Darcy’s equation.

Thanks to the linearity of the H transform, we can split
the pressure into a homogeneous contribution and one due to
the heterogeneity. Define P=Phom+Phet, where Phom is the
pressure for a homogeneous system and Phet is the effect on
pressure of the heterogeneity. Using the transformed version
of Darcy’s law and the notation previously introduced in Eq.
�5�, we can find an expression for the transform of Phet and
hence the values of Phet:

T�P� = R�, �6a�

T�HPhom + T�HPhet = R�, �6b�

Phet = HTT�−1�R� − T�HPhom� . �6c�

If the equations are solved on the entire system, this is just
as expensive as calculating the entire fine-scale pressure so-
lution. However, in the case where we can predict where or
at what scales the deviation of pressure from the homoge-
neous case will be more severe, we can arbitrarily choose to
keep only the corresponding elements in the calculation of
Phet, leading to savings in computational time. The linear size
of the matrix T� that we need to invert is reduced as we
delete the rows and columns corresponding to elements in
Phet that we do not wish to calculate. This solution is then
integrated with the previously determined “default” values to
give an N�N system that is nonuniformly coarse grained.

On the other hand, if we have the resources to calculate P
and Phet at every location, we can can compare them to au-
tomatically detect the regions where heterogeneity is
strongly affecting the pressure profile.

In Fig. 11 an example can be seen. The permeability map
was constructed by taking a 16�16 section of SPE10 data
�17� and substituting it in the upper left quarter of a 32
�32 unit permeability system. One way of producing the
nonuniform coarse graining is by only keeping the coeffi-
cients in the regions where the transform of Phet is large. This
leads to a correct pressure solution where details are only
kept at the locations and scales needed.

More realistically, we do not know the fine-scale pressure
solution a priori and we require a criterion to select the ele-
ments to keep. Figure 12 shows the elements kept in the
thresholding of Phet. We notice how most of the elements
kept at the high levels �3 and 4� correspond to the location of
the heterogeneities. Moreover, the diagonal coefficients are

FIG. 10. �Color online� Analysis of the importance of diagonal
differences. �a� Fine-scale synthetic permeability map, 32�32. �b�
Fine-scale pressure solution. �c� Estimate of pressure by eliminating
coefficients referring to diagonal differences and all details at level
4 �keeping 171 /1024 elements�. �d� Relative error between the
pressure estimate in �c� and the fine-scale solution. �e� Estimate of
pressure by eliminating coefficients below a certain threshold in the
pressure transform �keeping 171 /1024 elements�. �f� Relative error
between the pressure estimate in �e� and the fine-scale solution. In
this case diagonal differences are important.
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only kept in levels 2 and 3. For the automatization of this
method, we need to detect the location of the heterogeneities.
One indicator of heterogeneity is the permeability gradient.
In Fig. 13 we can see the horizontal and vertical gradients of
permeability at the different levels.
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FIG. 11. �Color online� Example of a permeability map with
localized heterogeneity. The permeability map was constructed by
taking a 16�16 section of SPE10 data and substituting it in the
upper left quarter of a 32�32 unit permeability system. �a� Loga-
rithm of permeability. �b� Fine-scale pressure solution, flow from
left to right. �c� Estimate of pressure obtained by keeping the 150
largest elements in the transform of Phet. �d� Relative error between
fine-scale solution and estimate in �c�. �e� Estimate of pressure ob-
tained by keeping the 95 largest elements in the transform of Phet.
�f� Relative error between fine-scale solution and estimate in �e�.
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FIG. 12. �Color online� A visualization of the elements kept at
different scales in the estimate of Fig. 11�c�. At levels 3 and 4 most
of the elements kept are located in the same location as the hetero-
geneous permeability.
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FIG. 13. �Color online� A plot of the horizontal and vertical
gradients of permeability at different levels for the map shown in
Fig. 11. Notice a correspondence between high gradients in the
heterogeneous regions and the locations of the coefficients kept in
Fig. 12.
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FIG. 14. �Color online� An estimate of pressure based on keep-
ing elements where the gradients of permeability are high. �a� Es-
timate of pressure obtained by keeping the 137 largest elements in
the transform of Phet. �b� Relative error between fine-scale solution
and estimate in �c�. �c� Pressure estimate having kept 137 out of
1024 coefficients where the permeability gradients are higher. �d�
Relative error between fine-scale solution and estimate in �c�. The
error for case �c�, where the coefficients are chosen based on the
gradient, is approximately twice as large as in �a� for the same
number of coefficients kept. The reason for this is that in case �c�
only coefficients for horizontal and vertical differences were al-
lowed and only at scale 4.
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We can arbitrarily decide to keep all elements up to level
3 and elements at levels 4 only where the permeability gra-
dient of the corresponding direction is high �see Fig. 14�.
This is a criterion that we can use to generate pressure solu-
tions that are nonuniformly coarse grained starting only with
a fine-scale permeability map. It could be argued that the
example chosen is not representative as the heterogeneity is
only present in a small part of the system and, more impor-

tantly, this part is conveniently situated in one of the blocks
that we can recognize even at level 1.

Figure 15 refers to a less idealised case: the 16�16 het-
erogeneous SPE block has been set at the center of a system
with permeability normally distributed around the mean of
the SPE block.

The corresponding map of permeability gradients and co-
efficients kept can be found in Figs. 16 and 17.

Finally, the new algorithm was applied to the previously
mentioned sample of 30 permeability realizations. Plots of
the mean relative error versus the thresholding parameter and
the number of elements kept can be seen in Fig. 18. Consider
the gradient �x

i k of permeability in the horizontal direction at
level i: the corresponding element is retained in the trans-
form if

�x
i k � max��x

i k� − q���x
i k� .

The higher the filtering parameter q, the more elements will
be kept and the better the pressure estimate. Notice that this
method preserves areas of high gradient, where the pressure
is not “linear” �as would be given by uniform permeability
with the specified boundary conditions�.

The error is only around 3.5% if keeping fewer than 100
of the 1024 elements More analysis for different kinds of
systems would be needed to draw a definite estimate of the
likely error in performing this approximate solution.

To summarize, one way of obtaining a nonuniformly
coarse grained pressure solution is to express the pressure as
a sum of a component due to a uniform permeability under
the specified boundary conditions and an extra term due to
the heterogeneity. By storing the solution for the homoge-
neous permeability and adding terms explicitly calculated
only in regions where the permeability gradients are high, we
can obtain an estimate of the pressure with limited computa-
tional cost.

C. Discussion

A method was suggested to achieve an automatic nonuni-
form coarse graining of the pressure profile. The focus is on
the location of particularly heterogeneous permeability re-
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FIG. 15. �Color online� A normally distributed permeability with
a more heterogeneous inclusion, a 16�16 subset of SPE10 at its
center. �a� Logarithm of permeability. �b� Fine-scale pressure solu-
tion, flow from left to right. �c� Estimate of pressure obtained by
keeping the 192 largest elements in the transform of Phet. �d� Rela-
tive error between fine-scale solution and estimate in �c�. �e� Esti-
mate of pressure obtained by keeping only 192 coefficients refer-
ring to the locations of high permeability gradients, as in Fig. 14. �f�
Relative error between fine-scale solution and estimate in �e�.
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FIG. 16. �Color online� A plot of the horizontal and vertical
gradients of permeability at different levels for the map shown in
Fig. 15. Notice a correspondence between high gradients and the
heterogeneous regions and the locations of the coefficients kept in
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FIG. 17. �Color online� A visualization of the elements kept at
different scales for the permeability of Fig. 15.
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gions. The underlying pressure solution is taken to be a lin-
ear pressure gradient or, more in general, the pressure solu-
tion that would be obtained with uniform permeability and
the specified boundary conditions. The correct pressure solu-
tion can be expressed as the sum of this linear pressure and a
contribution due to the heterogeneity. Using the formalism
described in Eq. �6c�, we find an expression for the transform
of Phet, the contribution to the pressure given by the hetero-
geneity. We now select the coefficients in Phet that we want
to calculate, based on high-permeability gradients. These are
related to the regions where the pressure is not linear. By
combining these coefficients with the linear solution, we ob-
tain a nonuniform pressure solution.

In the case where we start by knowing P and Phet, this
method can be reversed to locate regions of linear pressure
�in the sense imposed by the boundary conditions�. For each
specific case we would need to apply the known boundary
conditions to a homogeneous system to calculate the homo-
geneous pressure component. Once this is known, we could
proceed to find the correct entire pressure solution at the
level of detail required.

An improvement could be achieved by including also di-
agonal differences at some scales, and it is likely that tuning
the thresholding parameters for the various types of differ-
ences at each scale would lead to a better and more opti-
mized pressure estimate.

An advantage of this approach is that although the calcu-
lation of pressure is done with a reduced number of ele-
ments, the final upscaled pressure is on the same grid as the
fine one. This eliminates problems to do with the change of
coordination number of the permeability map on coarse re-
gions that border finer ones. The errors encountered with the
first method over 30 realizations of heterogeneous perme-
ability suggest that, unless there are specific requirements in
the accuracy of the estimate, this method can guarantee a
satisfactory estimate of the pressure on an adaptive grid to
within 10% or less of the original fine-scale solution. It could
also be argued that possible inaccuracies in this stage of up-
scaling are a smaller source of error than the inherent uncer-
tainty of the fine-scale model. In Sec. V this issue will be
considered further.

V. ENSEMBLE UPSCALING

Given the great uncertainty present in the permeability
data available, it is often better to upscale the statistics of

permeability rather than permeability itself. So the solution
to an upscaling problem does not necessarily have to be a
single coarse permeability map or pressure profile; it could
well be an ensemble of them, which should in some way
preserve the statistics of the fine-scale permeability. A proba-
bilistic approach to choosing the elements to be kept in the
T� matrix might be a way to achieve this kind of upscaling.
We could assign to each element in P� a probability of being
eliminated depending on whether the element is present or
not in the P� for one of the special cases.

From a single fine-scale permeability map, multiple pres-
sure solutions could be obtained. Unfortunately it is unlikely
that such a way of proceeding could be proved to ensure
preservation of the underlying permeability statistics. Never-
theless, generating an ensemble of pressure solutions would
probably mitigate both the uncertainty in the fine-scale per-
meability and upscaling errors.

VI. SUMMARY

A hierarchical transform was introduced to represent pres-
sure solutions as an average value plus some fluctuations at
different scales and locations. With the formalism introduced
in Pancaldi et al. �13�, applying this transform to Darcy’s
law, a transformed transmissibility matrix was obtained. A
method was suggested to select which parts of this matrix is
to be retained to produce a nonuniformly coarse grained
pressure solution.

Looking at ensemble statistics, it can be said that nonuni-
form coarse graining can produce more faithful estimates of
the pressure solution compared to the uniform case for the
same number of elements kept, and hence the same compu-
tational cost.

In the literature, many criteria have been used to guide the
adaptivity of nonuniform grids �3,6,7�. Mostly these methods
are based on flow calculations performed to identify the ar-
eas of high flow rate. The method suggested does not require
any such prior information. A more advanced localization of
areas to be preserved in detail would certainly improve the
performance of the method, although at some computational
efficiency cost.

Finally, the possibility of generating an ensemble of pres-
sure solutions from a single fine-scale permeability was dis-
cussed.
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FIG. 18. Plots of relationship between mean relative error in the estimate of pressure compared to the fine-scale pressure as a function
of the filtering parameter q, and the number of elements kept. Notice the criterion for thresholding: Consider the gradient of permeability in
the horizontal direction at level i, �x

i k: the corresponding element is retained in the transform if �x
i k�max��x
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i k�. �a� Mean relative

error vs q. �b� Mean relative error vs the number of elements kept. �c� Number of elements kept vs q.
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APPENDIX A: THE HIERARCHICAL TRANSFORM—
WRITING THE H MATRIX

A useful property of the H matrix is that its elements can
be determined based on the binary representation of the num-
ber of the cell to which they refer. In the following, H for a
4�4 system will be written starting from the cell indices.

By identifying each cell with its row and column indices
and expressing these in binary format, different digits deter-
mine to which subgroup it belongs to at the different levels.
The subgroup will be associated with value 1 or −1 depend-
ing on what type of difference is being considered.

For example, let us consider the indices for a 4�4 system
�starting the indexing from 0�:

�
1�0,0� 5�0,1� 9�0,2� 13�0,3�
2�1,0� 6�1,1� 10�1,2� 14�1,3�
3�2,0� 7�2,1� 11�2,2� 15�2,3�
4�3,0� 8�3,1� 12�3,2� 16�3,3�

� . �7�

If we express the i and j indices in binary format, we get

�
�00,00� �00,01� �00,10� �00,11�
�01,00� �01,01� �01,10� �01,11�
�10,00� �10,01� �10,10� �10,11�
�11,00� �11,01� �11,10� �11,11�

� . �8�

Looking at the digits in different positions of these indi-
ces, we recover the different levels of description. At each
level the values of these digits can be used to determine
which elements should be 1, −1, or 0 to recover the desired
difference �horizontal, vertical, or diagonal�. The algorithm
was implemented to generate H matrices for systems of the
desired size, always a power of 2.

If we look at the system at level 1, we need to concentrate
on the left most digits in the i and j indices, which are

�
�0,0� �0,0� �0,1� �0,1�
�0,0� �0,0� �0,1� �0,1�
�1,0� �1,0� �1,1� �1,1�
�1,0� �1,0� �1,1� �1,1�

� . �9�

Elements which belong to the same level 1 subgroups
have equal i and j indices, clearly showing the four corners.

Using these indices in binary format, we can write the
rows of the H matrix one by one to reproduce the correct
differences �horizontal, vertical, and diagonal� at the right
levels.

Labeling the rows and columns of H with k and l, rows
k=2,3 ,4 refer to the level 1 description. The horizontal dif-
ferences at this level are on row 2, row 3 is for vertical, and
row 4 is for diagonal ones. All elements are either 1 or −1
according to the following rule �see Eq. �9��:

For row k=2, the upper and lower left corners are 1 and
the rest −1:

if i(l)=0
element=1

else
element=−1

For row k=3, right and left upper corners are 1 and the
rest −1:

if j(l)=0
element=1

else
element=−1

For row k=4, right upper and left lower corners are 1 and
the rest −1:

if j(l)=i(l)
element=1

else
element=−1

To obtain the elements for level 2, we need to consider the
second digits of the indices in Eq. �8�:

�
�0,0� �0,1� �0,0� �0,1�
�1,0� �1,1� �1,0� �1,1�
�0,0� �0,1� �0,0� �0,1�
�1,0� �1,1� �1,0� �1,1�

� . �10�

Now the system is subdivided into 16 blocks �level 2�,
which we can combine into 4 groups, each of which we can
describe with the three types of differences.

In H rows 5–8 are reserved for horizontal differences in
the four subgroups �numbered down and then right�, 9–12
are for vertical, and finally 13–16 are for diagonal differ-
ences. The elements which refer to subgroups which are not
being considered are simply 0.

The normalization is performed ensuring that that the sum
of the squares of the elements in each row sum to 1.

APPENDIX B: FIGURE 1, THE SCHEME UNDERLYING H

The following explains Fig. 1 in more detail. Consider a
single row in H:

row 1= �c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16�.
If we consider each row as independent, each element in the
above vector multiplies a single corresponding pressure
value. The coefficients ci can be therefore seen as “weights”
in a weighted sum of all the pressure values. Figure 1 shows
a matrix representation of the weights for each column. Rep-
resenting row 1 as a matrix �columns first�, we get the level-0
weights as

�
c1 c5 c9 c13

c2 c6 c10 c14

c3 c7 c11 c15

c4 c8 c12 c16

� = �
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
� .

This square is the square in the top left corner of Fig. 1. This
multiplies element by element the pressure map:

�
p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15

p4 p8 p12 p16

� ,

which gives a sum of all pressures.
For level 1, vertical differences �row 2� are given by
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�
c1 c5 c9 c13

c2 c6 c10 c14

c3 c7 c11 c15

c4 c8 c12 c16

� = �
1 1 − 1 − 1

1 1 − 1 − 1

1 1 − 1 − 1

1 1 − 1 − 1
� .

For level 2, vertical differences for subgroup 1 �row 5� are
given by

�
c1 c5 c9 c13

c2 c6 c10 c14

c3 c7 c11 c15

c4 c8 c12 c16

� = �
1 1 1 1

1 1 1 1

− 1 − 1 − 1 − 1

− 1 − 1 − 1 − 1
� ,

and so on, as shown pictorially in Fig. 1.
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